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Motivation

 Regulators's requirements and government's policies in terms 
of Sustainability are affecting the investment environment and 
the challenges and opportunities faced by companies. 

 The ESG rating and its use in the investment choices has 
become a mantra.

 Stranded assets, particularly from climate‐related physical and 
transition risks, has spurred work by financial supervisors and 
central banks. 

 Recent regulatory directives require mandatory disclosure of 
sustainable activity in some countries, only on a voluntary 
basis in others.
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Motivation

 Financial institutions and their supervisors are still at an early 
stage in developing and deploying suitable datasets, models, and 
tools. 

 Better data and analysis to properly measure and manage 
exposures to environment‐related risks are required. 

 Existing literature pointed out that corporate social responsibility 
(CSR) has a potential impact on the performance of the firm.

 There is only limited evidence of the relationship between non-
financial indicators (e.g. ESG score) and the firm's profitability
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Sustainable and Responsible Investments

 The European Sustainable Investment Forum (Eurosif) defines 
“Sustainable and responsible investment (SRI)” as a long-term 
oriented investment approach which integrates ESG factors in 
the research, analysis and selection process of securities 
within an investment portfolio. 

 S&R finance has become a major aim for asset managers who 
are regularly  dealing with the measurement and management 
of ESG risks. 

 3 primary drivers of increased ESG investment: 

 sustainability challenges, 

 shifts in investor preferences,

 improvement in data and analytics. 
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Motivation

 In 2022  total U.S.-domiciled sustainably invested assets 
under management (institutional + retail), dropped to $8.14 
trillion, representing 12% of the $66 trillion in total U.S. AUM 
(Forum for Sustainable and Responsible Investment’s 2022 
trends report), (while in 2020 they represented 33%) 

 Active strategies represent the majority of ESG-related AUM, 
at 60% in the U.S. and 82% in Europe. 

 In this context asset managers look for some assessment of 
sustainability for guidance and benchmarking

 ESG score aimed to provide disclosure on the E,S and G 
(corporate social responsibilities) metrics. 

 CSR/ESG  ratings are becoming quite popular even if highly 
questioned in terms of reliability
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Aim
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 To assess how structural data- balance sheet items may be 
related to ESG scores assigned to regularly traded stocks. 

 We focus on ESG investments by considering the ESG scores 
for explaining the firms' profitability, not trivial the virtuous 
circle between ESG investments and the firms‘ success.

 Using a ML approach (Random Forest algorithm), we 
investigate how a firm’s profitability may be affected by ESG 
scores for the companies which constitute the STOXX 600 
Index. 

 We study the relationship between ESG score and EBIT using 
machine learning interpretability tool-boxes

Aim of the paper 
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Literature Review
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Literature Review 1.1

Financial performance of “sustainable companies”:

 Higher future returns for better ESG firms

Mahjoub and Khamoussi, 2012; Mahler et al.,2009; 
Trucost and Mercer, 2010; Nakao et al., 2007; Weber et 
al., 2010; Derwall et al., 2005; Van de Velde et al., 2005

 Lower future returns  for better ESG firms

Makni et al., 2009; Renneboog et al.2008; Simpson and 
Kohe2002; Angel et al., 1997;

 No meaningful differences 

 Belghitar et al. (2014), Hamilton et al. (1993), Statman
(2000), Bauer et al. (2005), Bello (2005), Kreander et al. 
(2005), Utz et al. (2014)). 
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Literature Review 1.2
Performance  of Sustainable Companies 

Companies with robust ESG practices display a lower cost of 
capital, lower volatility and few instances of bribery, corruption 
and fraud, the opposite happening for companies with poor ESG 
practices (Lins et al., 2017; Chava, 2011; Lansilahti, 2012; 
Bhagat et al., 2008; Cremers et al., 2005; Deutsche Bank, 
2012).

Contradicting results Arribas et al. (2019a): the unexpected 
performance of sustainable and conventional mutual funds are 
mainly due to the way you measure sustainability

 (Lin et al., 2019) bidirectional linkages between CSR and 
corporate financial performance (CFP) Panel Vector 
Autoregression in GMM context. 

Drempetic et al. (2020) the availability of a company’s ESG 
data on the company’s sustainability and fin. performance are 
positively correlated

•Rita D’Ecclesia,                Pagina 12



Profitability and ESG

 the relationship between structural data, i.e. balance 
sheet and income statement information, and CSR 
performance as in Drempetic et al. (2020), Garcia et al. 
(2020), and Lin et al. (2019). They use vague and 
heterogeneous data-sets so the results are not robust and 
have to use the Rough data set theory.

 The theory of slack resources is used:  profitability is 
expected to have a positive impact on the ESG score: 
companies with the greatest resources are precisely those 
who can afford the necessary investments to improve the 
ESG score (Drempetic et al., 2020). 
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 Green bonds, largely issued by corporations, play a key 
role even if they have provided the same risk-return 
profiles of its conventionally counterpart (Hachenberg and 
Schiereck, 2018). Pricing of green bonds does not reflect 
the quality of the bond (Zerbib, 2019).
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 Poor consistence of ESG rating:Jewell et al. (1998):  credit 
ratings from Moody’s and S&P’s are correlated at 0.99, (Berg 
et al. (2019) while correlation between ESG ratings on average 
0.61).

 Chatterji et al. (2016): ratings from different providers differ 
dramatically, information received from CRAs is quite noisy. 
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 Melas et al., 2018 explain how ESG characteristics have led to 
financially significant effects: 

 Borrowing from Central Banks creates 3 “transmission 
channels” within a standard DCF model: 
 i) the cash-flow channel, 

 ii) the idiosyncratic risk channel 

 iii) the valuation channel. 

 i) and ii) are transmitted through corporations’ idiosyncratic risk 

profiles,  

 iii) is linked to companies’ systematic risk profiles. 

ESG has an effect on valuation and performance…………..
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Multivariate approach 

Weber et al. (2008) employs ESG criteria to predict accounting 

indicators, using logistic regression. The results indicate that the 

statistical approach is useful to show that ESG performance can 

explain corporate financial performance with regard to some EBITDA 

margin, ROA, and ROE. However, it cannot predict TR, because 

there might be too many other important influences on TR (Cerin et 

al., 2001) or that the shareholders do not integrate.

Weber (2017) investigates the connection between ESG 

performance and financial performance of Chinese banks used 

panel regression. the integration of ESG data is useful for financial 

decision makers (Monk et al., 2019).
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 Artificial Intelligence  approach 

 In et al., 2019 : AI may improve the collection and data as 
well as its analysis

 ESG data can be text data, categorical data, and 
quantitative so  AI methods are able to recognize patterns 
without assuming a certain distribution of the data

Wang et al. (2012) use the AdaBoost algorithm to forecast 
equity returns and Wang et al. (2014) show that using 
different training windows provides better performance. 
Batres-Estrada (2015) and Takeuchi and Lee (2013) Moritz 
and Zimmermann (2016) use tree-based models to predict 
portfolio returns. Gu et al. (2020)  forecast individual stock 
returns 

 Alberg and Lipton (2017) who propose to forecast company 
fundamentals (e.g., earnings or sales) rather than returns.
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Methodology 
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Machine Learning 

A generic regression model for estimating the relationship between a target 

(or response) variable, Y , and a set of predictors (or features), X1,X2, ...,Xp
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To estimate f   we apply both, individual techniques (Decision Trees) 

and ensemble methods (bagging, gradient boosting, Random 
forest) by minimizing the reducible error:

Comparing ML to the generalized linear model  



 The decision trees (DT) algorithm splits the predictor space X 
into J distinct and non-overlapping regions, providing the same 
prediction for all the observations falling into each region

 The target variable is estimated by the average values of the 

variable belonging to the same region Rj.
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Decision Trees



Bagging and Random Forest
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 The bagging was designed to improve machine learning 
algorithms’ stability and accuracy. 

 It creates multiple bootstrap samples from the training data and 

fits a weak learner for each sample. The weak learners are 
aggregated by averaging their outputs.

 Compared to bagging, RF peculiarity is the way of considering the 
predictors: at each split, RF selects a random subset of predictors as 
candidates for the subdivision from the final set of predictors, thus 
preventing the predominance of strong predictors in the subdivisions 
of each tree (Breiman, 2001).

 RF estimator:

where B is the number of the bootstrap sample and f is the DT estimator 

over the b sample.
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Gradient Boosting
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GLM



Random Forest: Main strenght
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 It is a non-parametric method able to catch tricky relations 
between inputs and outputs, without involving any a-priori 
assumption.

 It is possible to handle heterogeneous data and intrinsically 
implement feature selection, making them robust to not 
significant or noisy variables.

 They are robust to outliers or missing values and are 
interpretable.



Random Forest: main issues 
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 The choice of the N of trees should be done carefully, in order to 
reach the highest % of explained variance and the lowest mean 
of squared residuals  (MSR).

 Variable importance is determined according to the relative 
influence of each predictor, by measuring the N.of times a 
predictor is selected for splitting during the tree building 
process. 

 A weighted impurity measure has been proposed in Breiman
(2001) for evaluating the importance of a variable Xm in 

predicting the target Y , for all nodes t averaged over all NT 
trees in the forest.

 the Gini importance, obtained by assigning the Gini index to the 
impurity i(t) index. (Mean Decrease Gini, MDG)
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Model’s Interpretability
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Model’s Interpretability
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Model’s Interpretability



DATASET
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ESG Scores

 Fitch Ratings launched ESG Relevance Scores (ESG.RS) for 
1,534 corporate issuers in January 2019; more than 143,000 
ESG.RS for over 10,200 issuers and transactions. 

 MSCI introduced: ratings, indexes and analytics. 

 Ratings: 75,000 companies and more than 650,000 equity 
and fixed income securities. based on the exposure of each 
company to industry specific ESG risks

 The Bloomberg ESG Data Service analyses 11,500 companies 
in 83 countries. 800 metrics covering all the aspects of ESG, 
from emissions to the % of women employees. Disclosures:  
E; S; G
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400 Companies listed in the STOXX Europe 600 
index:

 Balance sheet information 

 ESG scores

 E score

 S scores

 G scores

Period: 2011-2020

Dataset
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Variables
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Main statistics
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Main Features
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Dataset description
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ESG variables: density Function
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ESG SCORE: Density function by sector
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Dataset description
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Results
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Model’s prediction performance
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Density functions of observed values
and models’ estimated values
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Variable importance
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Partial Dependence plot
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Interpretability: ICE plots
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ICE plots highlight the 

variation in the fitted values

across the range of a 

feature, suggesting where

and to what extent

heterogeneities might exist

(Goldstein et al., 2015)

The predicted EBIT 

values show a 

differentiation in the

60-90 range of the ESG 

score



Interpretability: CP interpretation
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Interpretability: features interaction
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Feature interaction - Each of the input features with all other features in predicting

EBIT values.
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Interpretability: features interaction
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Two-way ESG:Score interactions with the other features in predicting EBIT values.
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Interpretability: shapley value
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Interpretability of the results: shapley value
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 Marks on x-axis indicate 
the ESG score distribution

 Region 50-85 of the ESG 
score is the most relevant 
for the interpretation: the 
EBIT prediction rises with 
increasing ESG score

 Region 0-30 of the ESG 
score: the EBIT prediction
decreases with increasing
ESG score

Interpretability of the results: ALE plot



Conclusions

 ESG score has a significant effect on the firm’s profitability

 Only a massive investment in sustainability and ESG criteria, 
which corresponds to higher ESG scores, leads to successful
objectives, enhancing the strength of a company’s balance sheet

 Weak efforts in binding ESG elements into an investment
strategy do not create an extra profit margin
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